National Repository of Grey Literature 5 records found  Search took 0.01 seconds. 
FIRST PRINCIPLES ANALYSIS OF MECHANICAL STABILITY OF SOLID CRYSTALS
Řehák, Petr ; Buršík, Jiří (referee) ; Šob, Mojmír (referee) ; Černý, Miroslav (advisor)
The aim of the author’s research in the period of his PhD study was the analysis of mechanical stability of cubic crystals under external loading. This work demonstrates several methods used for a study of mechanical stability of fcc crystals (C, Al, Ir, Pt, Au) during isotropic (hydrostatic) tensile loading. Ab initio methods were used for this purpose. Studied crystals were subjected to simulated isotropic tensile deformation and an analysis of elastic stability was performed. This analysis shows that first elastic instability in Al, Pt and Au crystals corresponds to vanishing of the trigonal shear modulus and diamond, Ir remains stable up to the state of maximum isotropic stress. According to the calculated band structure diamond crystal preserves his insulating character up to the onset of instability. Consequently, phonon spectra of all crystals were calculated using the linear response method and their dynamic stability was assessed. Obtained results reveal soft phonon modes in Al, Pt and Ir before an occurrence of elastic instability. Selected short-wavelength instabilities are confirmed using models of microscopic deformation and also using dispersion curves obtained by a supercell method. The observed instabilities lower critical strains related to the volumetric instability up to 40 % whereas the reduction of critical stress is by 20 % at the most.
Stability of crystalline solids from first principles
Řehák, Petr ; Šob, Mojmír (referee) ; Černý, Miroslav (advisor)
This work deals with study of stability of solid crystals under isotropic loading. Ab initio methods were used for this purpose. Crystals of four fcc metals (Al, Cu, Ir, Au) and diamond were subjected to simulated isotropic tensile deformation and maximum value of isotropic stress was evaluated for them. Consequently, phonon spectra were calculated for several strain values in order to assess crystal stability. Phonon instabilities in dispersion curves of diamond, Al, Ir and Au appeared at strains lower than those corresponding to their decohesion. This appearance of instability determinates the value of ideal strength. However, significant reduction (by about 20%) was found only in the cases of Au and Ir.
FIRST PRINCIPLES ANALYSIS OF MECHANICAL STABILITY OF SOLID CRYSTALS
Řehák, Petr ; Buršík, Jiří (referee) ; Šob, Mojmír (referee) ; Černý, Miroslav (advisor)
The aim of the author’s research in the period of his PhD study was the analysis of mechanical stability of cubic crystals under external loading. This work demonstrates several methods used for a study of mechanical stability of fcc crystals (C, Al, Ir, Pt, Au) during isotropic (hydrostatic) tensile loading. Ab initio methods were used for this purpose. Studied crystals were subjected to simulated isotropic tensile deformation and an analysis of elastic stability was performed. This analysis shows that first elastic instability in Al, Pt and Au crystals corresponds to vanishing of the trigonal shear modulus and diamond, Ir remains stable up to the state of maximum isotropic stress. According to the calculated band structure diamond crystal preserves his insulating character up to the onset of instability. Consequently, phonon spectra of all crystals were calculated using the linear response method and their dynamic stability was assessed. Obtained results reveal soft phonon modes in Al, Pt and Ir before an occurrence of elastic instability. Selected short-wavelength instabilities are confirmed using models of microscopic deformation and also using dispersion curves obtained by a supercell method. The observed instabilities lower critical strains related to the volumetric instability up to 40 % whereas the reduction of critical stress is by 20 % at the most.
Stability of crystalline solids from first principles
Řehák, Petr ; Šob, Mojmír (referee) ; Černý, Miroslav (advisor)
This work deals with study of stability of solid crystals under isotropic loading. Ab initio methods were used for this purpose. Crystals of four fcc metals (Al, Cu, Ir, Au) and diamond were subjected to simulated isotropic tensile deformation and maximum value of isotropic stress was evaluated for them. Consequently, phonon spectra were calculated for several strain values in order to assess crystal stability. Phonon instabilities in dispersion curves of diamond, Al, Ir and Au appeared at strains lower than those corresponding to their decohesion. This appearance of instability determinates the value of ideal strength. However, significant reduction (by about 20%) was found only in the cases of Au and Ir.
Ab initio simulation of three-axial deformation of perfect iron crystal
Černý, M. ; Šandera, P. ; Pokluda, J. ; Friák, Martin ; Šob, Mojmír
Ab initio electronic structure calculations of ideal strength, bulk modulus and equilibrium lattice parameter of iron in the body-centered-cubic lattice under three-axial tension are performed using the linear muĆn-tin orbitals method in atomic sphere ap proximation (LMTO-ASA) and the full-potential linearized augmented plane waves method (FLAPW). Magnetic ordering was taken into account by means of spin-polarized calculation. Two exchange-correlation energy approximations were employed, namely the local (spin) den-sity approximation (LDA) and the generalized gradient approximation (GGA). Computed values are compared with experimental data.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.